Kähler-Ricci soliton and K-st@bility, beyond Kähler-Einstein IJ

Contents

[Tian-Zhu's2] A new holomorphic invariant and uniqueness of Kähler-Ricci solitons Fundamental results

.

1/1

Rem.
Containing
$$0 \in M_{RP}$$
 [3/I
DH measure is supported on a polytope, called the moment polytope,
which is the image of a continuous (w.r.t. analytic topology) map
 $\mu: X \rightarrow M_{R}$. (μ is called the moment mop)
Actually, $DH = \frac{\mu \cdot w^n}{\int_X w^n}$ we $2\pi c_1(-lk_X) \cdot k$ where mt .
eg. If $X \cdot N T$ is toric, DH is the (normalized) restriction of
the Euclidean measure on M_{RP} (defide by the (attice $M \in M_{RP}$)
to the canonical polytope.
 Cp^2 | pt blow up of CP^2
 \downarrow

Consider a fet'l (smooth)

$$f: N_{R} \rightarrow R: \Xi \mapsto \int_{M_{R}} e^{\langle x, \Xi_{1} \rangle} DH(x) ,$$
This is strictly convex (as $e^{\langle x, \Xi_{2} \rangle}$ is) and proper (as $o \in Supp(DH)$)
Hence $\Xi !: \Xi \in N_{R}$ the minimizer of $f. \subset \int f$

$$i = Df_{\Xi} = \int_{M_{R}} \langle x, \bullet \rangle e^{\langle x, \Xi_{1} \rangle} DH(x) \equiv o \int \frac{1}{\Xi_{1}} N_{R}$$

$$\int_{M_{R}} (weighted harge enter) \quad (omp(eteress of R), N_{R})^{*} = M_{R}$$

We call this ZENA the K-optimal vector of XNT.

Def A special degeneration of X NT consists of the following dotn
$$\frac{4}{4}$$

 χ , χ is a normal R-Golenstein variety $u' \in T \times C^*$ -action
 $L \pi$: π is a C^* -equiv proj flat morphism $u' R$ -Fano fibres,
which is trivial away from the origin.
 $\chi \times C^* \xrightarrow{0} \pi^{-1}(C^*)$
 $L = L : 0$ is a $T \times C^*$ -equiv isom / C^*
 $C^* = C^*$
I'd like to use "meighted"
 $as "modified" south "secondary"
For a sp dq (π . 6), we define the modified Poinold son-Fatabri inv
 $N_{R} \times R$
 $indefined T = -\int_{M_{R} \times R} \langle \chi, (0, 11 > e^{\langle \chi, \chi \rangle} > DH_{\chi \circ M} T \times C^* (\chi))$
where $\chi \in N_{R}$ is the K-optimal vector of $\chi \wedge T$.
(it is also the K-optimal vector of $\chi \wedge T$.
 $As DH$ is T-equiv deform invariant$

 t°

· Aut

This

A DIGRESSION ...

Q. How about the uniqueness?

Anywey, there should be lerge amount of examples

 $\mathcal{V}_{\mathbb{I}}$

III. Examples

- ANY Toxic Feno mfJ educits KR solitons [Wang-Zhu'04] = ANY toxic Feno mfJ is mK-steld w.v.t. mex tous ection

possibly (often)
$$mF$$
-polystebl w.r.t. a smaller towes.
eq. (P^2) is mF -ps w.v.t. $T = \frac{1}{2}$.
 $\cdot 2p$ + blow p of (P^2) is mF -ps w.v.t. some $T = C^*$

Our observations and examples illustrate

3/1

IV. Moduli space - the main theorem

SUPEREXPESS INTRODUCTION to STACKS (cf. [I. Appendix A])
A steck over Algit / Cpx is a cetagory over Algit (Cpx,
i.e. a functor
$$\mathcal{C} \rightarrow Algit / Cpx$$

enjoying some geometric assumptions (such as ${}^{3}p.b.$, can glue objit)
A typical example is $Alg \times \rightarrow Algit for \times c Alg.$
 $(S \rightarrow X) \mapsto S$
2 - Yoneda : $Alg \longrightarrow Stacks/Algit : X \longrightarrow (Algx \rightarrow Algot)$
"fully foithful"

 $|^{2}/$

Let
$$\mathcal{K}$$
 be a steck over $Alg_{et} (S_{ch}_{et}) / Cpx$
consisting of T-equivariant families of mK-ss K-op Faho T-mfds
Namely. \mathcal{K} is a cotegory whose object is
a T-equivariant family $\mathcal{K}' \supset T$ whose each fibre is a mt-ss K-op
 $\mathcal{K} \longrightarrow Alg_{et}/Cpx : \frac{1}{5}$ \longrightarrow \mathcal{K} into a stack.

Pup (I) K is Artin over Cpx. (Artin over Algét ?: NOT KNOWN)

$$\frac{eq}{d!} = \left(\frac{1}{2} \left(\frac{1}{2}\right)^{-1}\right)^{-1} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}\right)^{-1}\right)^{-1} = \frac{1}{2} \left(\frac{1}{2}\right)^{-1} \left(\frac{1}{2}\right)^{-1} = \frac{1}{2} \left(\frac{1}{2}\right)^{-1} \left(\frac{1}{2}\right)^{-1} = \frac{1}{2} \left(\frac{1}{2}\right)^{-1} = \frac$$

.

Let
$$K \in K$$
 be a substact of K consisting of femilies of
 m K-ss K-op Favo T-mtds which are K-equivalent (-t) to some smooth m Kps
K-op Favo T-mtds (i.e. $\exists x_0 \in [x]$: m K-ps smooth)

Main thum (I.)
There exists the moduli space
$$\mathcal{K}^{\circ} \xrightarrow{\neq} \mathcal{M}$$
 of \mathcal{K}°
Moveover, φ induces a bijective mop $[\mathcal{K}^{\circ}/\mathcal{K} \xrightarrow{=} \mathcal{M}]$.
 $\int \mathcal{M} \mathcal{K}$ -ps \mathcal{K} -op Fam T-ut φ
 $\| \mathcal{K} \xrightarrow{=} \mathcal{K}$
 $\| \mathcal{K} \xrightarrow{=} \mathcal{$

cf. Slide B in Heyema symposium

TV

1/5